Artificial Intelligence: A Modern Approach introduces basic ideas in artificial intelligence from the perspective of building intelligent agents, which the authors define as "anything that can be viewed as perceiving its environment through sensors and acting upon the environment through effectors." This textbook is up-to-date and is organized using the latest principles of good textbook design. It includes historical notes at the end of every chapter, exercises, margin notes, a bibliography, and a competent index. Artificial Intelligence: A Modern Approach covers a wide array of material, including first-order logic, game playing, knowledge representation, planning, and reinforcement learning.
From Book News, Inc.
a text primarily intended for use in an undergraduate course or course sequence. It shows how intelligent agents can be built using AI methods and explains how different agent designs are appropriate depending on the nature of the task and environment. It uses examples and exercises to lead students from simple reactive agents to advanced planning agents with natural language capabilities. Annotation copyright Book News, Inc. Portland, Or.
Book Description
The long-anticipated revision of this best-selling book offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Intelligent Agents. Solving Problems by Searching. Informed Search Methods. Game Playing. Agents that Reason Logically. First-order Logic. Building a Knowledge Base. Inference in First-Order Logic. Logical Reasoning Systems. Practical Planning. Planning and Acting. Uncertainty. Probabilistic Reasoning Systems. Making Simple Decisions. Making Complex Decisions. Learning from Observations. Learning with Neural Networks. Reinforcement Learning. Knowledge in Learning. Agents that Communicate. Practical Communication in English. Perception. Robotics. For those interested in artificial intelligence.
Book Info
Presents a unified, coherent picture of the AI field based on the ideal of intelligent agents, and shows how to build them using the AI methods. DLC: Artificial intelligence.
The publisher, Prentice-Hall Engineering/Science/Mathematics
The most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence.
From the Back Cover
The first edition of Artificial Intelligence: A Modern Approach has become a classic in the AI literature. It has been adopted by over 600 universities in 60 countries, and has been praised as the definitive synthesis of the field. In the second edition, every chapter has been extensively rewritten. Significant new material has been introduced to cover areas such as constraint satisfaction, fast propositional inference, planning graphs, internet agents, exact probabilistic inference, Markov Chain Monte Carlo techniques, Kalman filters, ensemble learning methods, statistical learning, probabilistic natural language models, probabilistic robotics, and ethical aspects of AI. The book is supported by a suite of online resources including source code, figures, lecture slides, a directory of over 800 links to "AI on the Web," and an online discussion group. All of this is available at: aima.cs.berkeley.edu
About the Author
Stuart Russell was born in 1962 in Portsmouth, England. He received his B.A. with first-class honours in physics from Oxford University in 1982, and his Ph.D. in computer science from Stanford in 1986. He then joined the faculty of the University of California at Berkeley, where he is a professor of computer science, director of the Center for Intelligent Systems, and holder of the Smith-Zadeh Chair in Engineering. In 1990, he received the Presidential Young Investigator Award of the National Science Foundation, and in 1995 he was cowinner of the Computers and Thought Award. He was a 1996 Miller Professor of the University of California and was appointed to a Chancellor's Professorship in 2000. In 1998, he gave the Forsythe Memorial Lectures at Stanford University. He is a Fellow and former Executive Council member of the American Association for Artificial Intelligence. He has published over 100 papers on a wide range of topics in artificial intelligence. His other books include The Use of Knowledge in Analogy and Induction and (with Eric Wefald) Do the Right Thing: Studies in Limited Rationality. Peter Norvig is director of Search Quality at Google, Inc. He is a Fellow and Executive Council member of the American Association for Artificial Intelligence. Previously, he was head of the Computational Sciences Division at NASA Ames Research Center, where he oversaw NASA's research and development in artificial intelligence and robotics. Before that he served as chief scientist at Junglee, where he helped develop one of the first Internet information extraction services, and as a senior scientist at Sun Microsystems Laboratories working on intelligent information retrieval. He received a B.S. in applied mathematics from Brown University and a Ph.D. in computer science from the University of California at Berkeley. He has been a professor at the University of Southern California and a research faculty member at Berkeley. He has over 50 publications in computer science including the books Paradigms of AI Programming: Case Studies in Common Lisp, Verbmobil: A Translation System for Face-to-Face Dialog, and Intelligent Help Systems for UNIX.
Excerpt. © Reprinted by permission. All rights reserved.
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the full breadth of the field, which encompasses logic, probability, and continuous mathematics; perception, reasoning, learning, and action; and everything from microelectronic devices to robotic planetary explorers. The book is also big because we go into some depth in presenting results, although we strive to cover only the most central ideas in the main part of each chapter. Pointers are given to further results in the bibliographical notes at the end of each chapter. The subtitle of this book is "A Modern Approach:" The intended meaning of this rather empty phrase is that we have tried to synthesize what is now known into a common framework, rather than trying to explain each subfield of AI in its own historical context. We apologize to those whose subfields are, as a result, less recognizable than they might otherwise have been. The main unifying theme is the idea of an intelligent agent. We define AI as the study of agents that receive percepts from the environment and perform actions. Each such agent implements a function that maps percept sequences to actions, and we cover different ways to represent these functions, such as production systems, reactive agents, real-time conditional planners, neural networks, and decision-theoretic systems. We explain the role of learning as extending the reach of the designer into unknown environments, and we show how that role constrains agent design, favoring explicit knowledge representation and reasoning. We treat robotics and vision not as independently defined problems, but as occurring in the service of achieving goals. We stress the importance of the task environment in determining the appropriate agent design. Our primary aim is to convey the ideas that have emerged over the past fifty years of AI research and the past two millenia of related work. We have tried to avoid excessive formality in the presentation of these ideas while retaining precision. Wherever appropriate, we have included pseudocode algorithms to make the ideas concrete; our pseudocode is described briefly in Appendix B. Implementations in several programming languages are available on the book's Web site, aima.cs.berkeley.edu. This book is primarily intended for use in an undergraduate course or course sequence. It can also be used in a graduate-level course (perhaps with the addition of some of the primary sources suggested in the bibliographical notes). Because of its comprehensive coverage and large number of detailed algorithms, it is useful as a primary reference volume for AI graduate students and professionals wishing to branch out beyond their own subfield. The only prerequisite is familiarity with basic concepts of computer science (algorithms, data structures, complexity) at a sophomore level. Freshman calculus is useful for understanding neural networks and statistical learning in detail. Some of the required mathematical background is supplied in Appendix A. Overview of the book The book is divided into eight parts. Part I, Artificial Intelligence, offers a view of the AI enterprise based around the idea of intelligent agentssystems that can decide what to do and then do it. Part II, Problem Solving, concentrates on methods for deciding what to do when one needs to think ahead several stepsfor example in navigating across a country or playing chess. Part III, Knowledge and Reasoning, discusses ways to represent knowledge about the worldhow it works, what it is currently like, and what one's actions might doand how to reason logically with that knowledge. Part IV, Planning, then discusses how to use these reasoning methods to decide what to do, particularly by constructing plans. Part V, Uncertain Knowledge and Reasoning, is analogous to Parts III and IV, but it concentrates on reasoning and decision making in the presence of uncertainty about the world, as might be faced, for example, by a system for medical diagnosis and treatment. Together, Parts II-V describe that part of the intelligent agent responsible for reaching decisions. Part VI, Learning, describes methods for generating the knowledge required by these decision-making components. Part VII, Communicating, Perceiving, and Acting, describes ways in which an intelligent agent can perceive its environment so as to know what is going on, whether by vision, touch, hearing, or understanding language, and ways in which it can turn its plans into real actions, either as robot motion or as natural language utterances. Finally, Part VIII, Conclusions, analyzes the past and future of AI and the philosophical and ethical implications of artificial intelligence. Changes from the first edition Much has changed in AI since the publication of the first edition in 1995, and much has changed in this book. Every chapter has been significantly rewritten to reflect the latest work in the field, to reinterpret old work in a way that is more cohesive with new findings, and to improve the pedagogical flow of ideas. Followers of AI should be encouraged that current techniques are much more practical than those of 1995; for example the planning algorithms in the first edition could generate plans of only dozens of steps, while the algorithms in this edition scale up to tens of thousands of steps. Similar orders-of-magnitude improvements are seen in probabilistic inference, language processing, and other subfields. The following are the most notable changes in the book: In Part I, we acknowledge the historical contributions of control theory, game theory, economics, and neuroscience. This helps set the tone for a more integrated coverage of these ideas in subsequent chapters. In Part II, online search algorithms are covered and a new chapter on constraint satisfaction has been added. The latter provides a natural connection to the material on logic. In Part III, propositional logic, which was presented as a stepping-stone to first-order logic in the first edition, is now presented as a useful representation language in its own right, with fast inference algorithms and circuit-based agent designs. The chapters on first-order logic have been reorganized to present the material more clearly and we have added the Internet shopping domain as an example. In Part IV, we include newer planning methods such as GRAPHPLAN and satisfiability-based planning, and we increase coverage of scheduling, conditional planning, hierarchical planning, and multiagent planning. In Part V, we have augmented the material on Bayesian networks with new algorithms, such as variable elimination and Markov Chain Monte Carlo, and we have created a new chapter on uncertain temporal reasoning, covering hidden Markov models, Kalman filters, and dynamic Bayesian networks. The coverage of Markov decision processes is deepened, and we add sections on game theory and mechanism design. In Part VI, we tie together work in statistical, symbolic, and neural learning and add sections on boosting algorithms, the EM algorithm, instance-based learning, and kernel methods (support vector machines). In Part VII, coverage of language processing adds sections on discourse processing and grammar induction, as well as a chapter on probabilistic language models, with applications to information retrieval and machine translation. The coverage of robotics stresses the integration of uncertain sensor data, and the chapter on vision has updated material on object recognition. In Part VIII, we introduce a section on the ethical implications of AI. Using this book The book has 27 chapters, each requiring about a week's worth of lectures, so working through the whole book requires a two-semester sequence. Alternatively, a course can be tailored to suit the interests of the instructor and student. Through its broad coverage, the book can be used to support such courses, whether they are short, introductory undergraduate courses or specialized graduate courses on advanced topics. Sample syllabi from the more than 600 universities and colleges that have adopted the first edition are shown on the Web at aima.cs.berkeley.edu, along with suggestions to help you find a sequence appropriate to your needs. The book includes 385 exercises. Exercises requiring significant programming are marked with a keyboard icon. These exercises can best be solved by taking advantage of the code repository at aima.cs.berkeley.edu. Some of them are large enough to be considered term projects. A number of exercises require some investigation of the literature; these are marked with a book icon. Throughout the book, important points are marked with a pointing icon. We have included an extensive index of around 10,000 items to make it easy to find things in the book. Wherever a new term is first defined, it is also marked in the margin. Using the Web site At the aima.cs.berkeley.edu Web site you will find: implementations of the algorithms in the book in several programming languages, a list of over 600 schools that have used the book, many with links to online course materials, an annotated list of over 800 links to sites around the web with useful AI content, a chapter by chapter list of supplementary material and links, instructions on how to join a discussion group for the book, instructions on how to contact the authors with questions or comments, instructions on how to report errors in the book, in the likely event that some exist, and copies of the figures in the book, along with slides and other material for instructors.
Artificial Intelligence: A Modern Approach FROM THE PUBLISHER
Intelligent Agents - Stuart Russell and Peter Norvig show how intelligent agents can be built using AI methods, and explain how different agent designs are appropriate depending on the nature of the task and environment. Artificial Intelligence: A Modern Approach is the first AI text to present a unified, coherent picture of the field. The authors focus on the topics and techniques that are most promising for building and analyzing current and future intelligent systems. The material is comprehensive and authoritative, yet cohesive and readable. State of the Art - This book covers the most effective modern techniques for solving real problems, including simulated annealing, memory-bounded search, global ontologies, dynamic belief networks, neural networks, adaptive probabilistic networks, inductive logic programming, computational learning theory, and reinforcement learning. Leading edge AI techniques are integrated into intelligent agent designs, using examples and exercises to lead students from simple, reactive agents to advanced planning agents with natural language capabilities.
SYNOPSIS
This book uses an intelligent agent as the unifying theme throughout i.e., the problem of AI is to describe and build agents that receive percepts from the environment and perform actions, and each such agent is implemented by a function that maps percepts to actions. covers different ways to represent these functions, such as production systems, reactive agents, logical planners and decision- theoretic systems explains the role of learning as extending the reach of the designer into unknown environments, and shows how it constrains agent design, favoring explicit knowledge representation and reasoning includes a thorough, up-to-date and integrated treatment of robotics and vision, written by John Canny and Jitendra Malik, two of the leading exponents in their respective fields analyzes basic techniques for addressing complexity (use of approximation, compilation, anytime algorithms, hierarchical abstraction) as general sources of power
Covers areas that are sometimes under-emphasized reasoning under uncertainty, learning, natural language, vision and robotics and explains in detail some of the more recent ideas in the field e.g., simulated annealing, memory-bounded search, global ontologies, dynamic belief networks, neural nets, inductive logic programming, computational learning theory, and reinforcement learning.
Tackles AI's philosophical critics head-on.
Gives equal emphasis to theory and practiceconsiders the basic concepts and mathematical methods of AI, what can and cannot be done with today's technology, at what cost, and using what techniques.
Integrates state-of-the art AI techniques intointelligent agent designs, using examples and exercises to lead the student from simple, reactive agents to full knowledge-based agents with natural language capabilities. Includes over 75 algorithms, and a variety of simulated environments for testing agent designs. presents algorithms at three levels of detail prose descriptions and pseudo-code in the text, and complete Common Lisp programs available by anonymous ftp or on floppy disk
Includes numerous written and programming exercises in each chapter.
FROM THE CRITICS
Booknews
a text primarily intended for use in an undergraduate course or course sequence. It shows how intelligent agents can be built using AI methods and explains how different agent designs are appropriate depending on the nature of the task and environment. It uses examples and exercises to lead students from simple reactive agents to advanced planning agents with natural language capabilities. Annotation c. Book News, Inc., Portland, OR (booknews.com)