From the Back Cover
Designing Storage Area Networks, Second Edition, succinctly captures the key technologies that are driving the storage networking industry. Tom Clark's works are helping to educate the IT community to the benefits and challenges of shared storage and are recommended reading for anyone wishing to understand this exciting new technology."
—Sheila Childs, VP Product Management, Legato Systems Chairperson, SNIA
Fibre Channel SANs have become a mainstay at the backend of the biggest corporations on the planet. The second edition of Designing Storage Area Networks brings the next wave of connection (IP) points and management into context, helping the user to quickly understand all the benefits before them."
—Steve Duplessie, Founder and Senior Analyst, Enterprise Storage Group
Designing Storage Area Networks, Second Edition, provides a practical roadmap through the ever-changing landscape of SAN technology. The new Fibre Channel, IP, and virtualization initiatives covered in this work will enable customers to implement comprehensive shared storage solutions that reduce management overhead and cost."
—John Webster, Founder and SeniorAnalyst, Data Mobility Group
Storage Area Networks (SANs) are now recognized as the preferred solution for fulfilling institutions' and enterprises' critical data-storage needs. Whether powered by Fibre Channel or TCP/IP and Gigabit Ethernet technology, SANs far exceed the capabilities of traditional storage access methods. SANs are quickly becoming the solution of choice for organizations that require high-volume data-handling capacity.
Written for network developers, IT consultants, administrators, and managers, this updated and greatly expanded edition of the best-selling Designing Storage Area Networks goes far beyond a straight description of technical specifications and standards. The text offers practical guidelines for using diverse SAN technologies to solve existing networking problems in large-scale corporate networks. With this book you will learn how the technologies work and how to organize their components into an effective, scalable design. In doing so, you will discover today's best methods for managing storage area networks, including new troubleshooting techniques.
Designing Storage Area Networks, Second Edition, also features detailed case studies that demonstrate how SANs can solve a number of commonly encountered business challenges, including LAN-free and server-free tape backup, server clustering, and disaster recovery. As an information-systems professional, you must keep pace with this powerful, evolving technology.
Key topic coverage includes: Using the SNIA Shared Storage Model Fibre Channel layers and protocols Fabrics and fabric switches Host bus adapters Fibre Channel RAID and Fibre Channel JBODs iSCSI and IP storage protocols and products SAN management and problem isolation techniques Building extended SANs for data center and remote storage access
0321136500B02242003
About the Author
Tom Clark is Director of Technical Marketing for Vixel Corporation, a manufacturer of Fibre Channel transceivers, hubs, fabric switches, and SAN management software. During his 15-year career in system engineering, he has gained extensive experience in data communications and internetworking, has published numerous articles on Fibre Channel technology, and has presented papers at several conferences, including Fibre Channel Technologies Conference and Expo.
0321136500AB12242002
Excerpt. © Reprinted by permission. All rights reserved.
This book expands and updates the content of my earlier book Designing Storage Area Networks: A Practical Reference for Implementing Fibre Channel SANs, published in the winter of 1999. At a thin 202 pages, that book was the first to provide a brief overview of storage area network (SAN) technology and was widely adopted as an introductory and training text for both vendors and customers.
Because of the rapid growth and technical development within the storage industry over the past three years, however, new functionality and technology initiatives are already transforming the SAN landscape. Advances in Fibre Channel performance and switch technology, the introduction of SANs based on Transmission Control Protocol/Internet Protocol (TCP/IP) and Gigabit Ethernet, and the emergence of storage virtualization have given customers more options for addressing their data storage needs. Although some of these technical initiatives are presented in my second book, IP SANs: A Guide to iSCSI, iFCP, and FCIP Protocols for Storage Area Networks, this text focuses on the practical considerations implementers should think about in designing SAN solutions with today's diverse technologies.
Storage area networks are now recognized as the preferred solution for fulfilling a wide range of critical data storage needs for institutions and enterprises. The success of SANs in establishing real end-user value is affirmed by the adoption of the technology by all major solution providers as their flagship server and storage offerings. IBM, Hewlett-Packard, Sun, Dell, and others now provide certified SAN configurations for performance, high availability, and backup of storage data, and storage vendors such as EMC, Hitachi Data Systems, XIOtech, and others offer SAN interfaces on their premier products. Although the current market penetration of SAN-based solutions is only 20 percent of the total storage market, SANs are expected to capture the majority of the market within a few years.
The emergence of storage networking represents the fusion of two distinct technologies, each with its own priorities, vocabulary, and culture. For 20 years, the glacial pace of storage development gradually resulted in smaller, higher-capacity disks and faster channel performance, but this evolutionary inertia was always bounded by a rigid master/slave relationship between hosts and storage. By contrast, the rapid and more volatile development of networking technology has overturned previous architectures and relationships and, as demonstrated by the Internet, has delivered a global capability with innovative and enriched feature sets. Combining the more conservative outlook of storage with the more dynamic worldview of networking has resulted in a collision of cultures that has actually benefited both disciplines. Data storage has been transformed from the frumpy wallflower of data communications into a stellar attraction for investors, vendors, and technologists. Networking has gained an endless supply of high-volume data that further extends and justifies its presence throughout the enterprise. It has also gained new opportunities to create storage-specific interfaces and functionality.
This synthesis of storage and networking into a new technology has presented both challenges and opportunities for customers and vendors. Storage administrators and managers must now be conversant in networking concepts and consequences such as addressing, routing, and network convergence, and network architects and administrators must learn the mysteries of LUNs, JBODs, and RAID levels. This book is therefore written for a broad audience of IT managers, administrators, consultants, and technical staff whose responsibilities may span both storage and networking implementations. In addition, storage networking has generated new concepts and issues previously undefined by either storage or networking. The unexpected consequences of positioning storage in an open, networked environment are also examined in the text, and particularly in the applications studies.
Although storage networking is an enabling technology for dealing with the massive growth of storage data, it is often criticized for presenting persistent interoperability and management issues. Some of the problems associated with SANs are simply the byproduct of a new technology struggling to break new ground. Other problems are, unfortunately, vendor-induced in an effort to retain market share. Overcoming interoperability issues and management complexity is a prerequisite for wider-scale adoption of SAN technology, and several industry initiatives are now attempting to address the remaining obstacles. Although it may take several years for some of these efforts to bear fruit, this book discusses them to indicate where help is on the way.
In the first edition of Designing Storage Area Networks, the underlying infrastructure, or plumbing, for SANs was exclusively Fibre Channel. As the first successful gigabit serial transport, Fibre Channel pioneered the signaling and data-encoding mechanisms later adopted by Gigabit Ethernet. Had Gigabit Ethernet appeared first, it might have preempted Fibre Channel as a storage network transport. Although Ethernet has on its side the massive momentum of market presence in the rest of the data communications space, its tardy arrival in storage networking now puts it in conflict with the flourishing Fibre Channel. Although this contention has generated ongoing religious disputes among vendors, both Fibre Channel and Ethernet are, after all, simply plumbing. This book provides technical detail on both Fibre Channel and Ethernet-based SAN technologies, in the expectation that customers will make their own decisions on which transport best meets their needs. The vast majority of vendors selling SAN solutions are planning to provide both Fibre Channel and IP-based products to accommodate their customers' requirements.
The people who have direct responsibility for designing and implementing SANs have a desperate need for more detailed information on product capabilities and interoperability, information such as which version of a particular backup application works with a specific database or level of operating system. Given the lead time required for hard-copy publishing, it is impossible to capture this very useful but granular information. By the time such a text hit the stands, it would be outdated and of little value. The Storage Networking Industry Association (SNIA) is currently establishing end-user organizations that maintain online databases of customer issues and solutions. I urge any reader seeking more detailed information on SAN solutions to become involved in this SNIA-led effort and to help build the practical resources that will benefit the user community at large.
Designing a storage network requires, first of all, answering a basic question: What is the application? Customers do not, after all, spend millions of dollars on storage arrays, tape subsystems, switches, servers, and cabling for the sake of the technology itself. Applications are fostering SAN deployment, and applications are as varied as the core requirements of diverse institutions and enterprises. Although vendors may package canned solutions to fulfill common needs such as storage consolidation or tape backup, the SAN architect should avoid being driven by vendors, instead driving the vendors to solve their specific application requirements. This text attempts to define the most common applications that are more efficiently served by SAN technology, but these examples only begin to address a much broader spectrum of real-world applications that storage networking may benefit.The Organization of This Book
This book takes you through a progression of concepts that in the end should provide a foundation for understanding storage networking infrastructures and applications. It assumes no prior knowledge of SANs and yet attempts to strike a balance between basic and advanced content. Hopefully, this mix will provide sufficient technical detail for those who need it and meaningful overview for those who want to understand SAN technology at a more abstract level.
The first two chapters provide a framework for understanding the central concepts of shared storage. Chapter 1 reviews the SNIA Shared Storage Model, which clearly abstracts the basic layers of storage applications and underlying infrastructure. The SNIA Shared Storage Model is a useful tool for understanding SAN architectures and positioning them in relation to upper-layer application requirements. It has also proven to be a useful tool for justifying SAN acquisitions to management by explaining how a particular solution will better serve business requirements. Chapter 2 provides an overview of storage and networking concepts and explains how the fusion of these ideas has created new means to solve data storage issues.
Because Fibre Channel was the first transport to appear on the storage networking scene and continues to ship in significant volumes, the next three chapters provide a technical discussion of Fibre Channel protocols, topologies, and products. Chapter 3 reviews lower-layer physical transport, protocols, and addressing. Chapter 4 reviews Fibre Channel topologies, with emphasis on the Fibre Channel fabric switch services provided by most SAN solutions today. Chapter 5 describes the product suite developed by vendors for Fibre Channel servers, storage, interconnects, and other components. Collectively, they provide a rich toolset for the SAN architect in designing efficient solutions.
Beginning in 2000, the initiative to transport storage data over mainstream TCP/IP networks generated IP storage networking architectures and products. These products further enhance the ability of SAN designers to craft shared storage configurations that leverage IP exclusively or integrate both IP and Fibre Channel into a heterogeneous storage network. Chapter 6 reviews the protocols and issues unique to IP SANs, and Chapter 7 describes IP storage products that have been introduced to the market over the past two years.
Chapter 8 provides an overview of storage-specific applications supported by the SAN infrastructure. Server clustering for high-availability data access, tape backup for data archiving, and data replication via disk mirroring are commonly deployed as part of a SAN solution, although these storage applications in turn are intended to serve high-level customer business applications and databases. Inevitably, the gains provided by SANs are accompanied by some pain. Although vendors attempt to debug and certify SAN configurations in advance, problems naturally arise during installation or subsequent operation. Chapter 9 explains some basic troubleshooting techniques and tools for identifying and isolating storage network problems.
Chapter 10 discusses SAN management and its unique challenges. Managers of shared storage must integrate transport management with management of data placement on disk or tape. Creating a unified management capability has been difficult, even for software vendors with ample resources to address SAN management. The Common Information Model (CIM) initiative, however, is at last getting traction in the industry and may provide the framework required for comprehensive management of storage networks.
Chapter 11 attempts to describe the amorphous entity known as "storage virtualization." Storage virtualization has suffered somewhat from excessive vendor marketing, but is a viable technology for simplifying storage administration and opening a broader market for SAN solutions. This chapter covers the theoretical capabilities of storage virtualization as well as the more limited functions currently available in shipping products.
Institutions and enterprises have been implementing SANs for a wide variety of applications. Some of these are discussed in Chapter 12, Application Studies, with examples of potential issues customers might face in the course of deploying and administering SANs. Where applicable, combinations of Fibre Channel and IP storage products are proposed, especially for addressing metropolitan and wide area SAN configurations.
Chapter 13 discusses the still unresolved issues of SAN technologies, including interoperability, management, and convergence of SANs with mainstream networking. For engineers, these issues are simply challenges to be mastered, provided that market competition does not artificially thwart their efforts. As a summary of SAN design, Chapter 14 offers speculation on the future of storage networking. That future promises to be as dynamic as the emergence of SANs was, with the rapid development of new storage initiatives such as virtualization and IP-based SANs, and accommodation of new host interconnects such as InfiniBand.
In this edition I have included in the appendixes additional material that may be useful as reference or background information on storage networking in general. The SNIA has produced some very valuable work in the form of the SNIA Shared Storage Model and the SNIA Dictionary. I encourage vendors as well as consumers of storage networking technology to take advantage of the SNIA's ongoing work and, when possible, to participate in SNIA activities. The more closely customers and technologists align their common goals, the more quickly viable solutions can be put into customers' hands.
0321136500P02282003
Designing Storage Area Networks: A Practical Reference for Implementing Fibre Channel and IP SANs, Second Edition FROM THE PUBLISHER
Storage Area Networks (SANs) are how recognized as the preferred solution for fulfilling institutions' and enterprises' critical data-storage needs. Whether powered by Fibre Channel or TCP/IP and Gigabit Ethernet technology, SANs far exceed the capabilities of traditional storage access methods. SANs are quickly becoming the solution of choice for organizations that require high-volume data-handling capacity. Written for network developers, IT consultants, administrators, and managers, this updated and greatly expanded edition of the best-selling Designing Storage Area Networks goes far beyond a straight description of technical specifications and standards. The text offers practical guidelines for using diverse SAN technologies to solve existing networking problems in large-scale corporate networks. With this book you will learn how the technologies work and how to organize their components into an effective, scalable design. In doing so, you will discover today's best methods for managing storage area networks, including new troubleshooting techniques. Designing Storage Area Networks, Second Edition, also features detailed case studies that demonstrate how SANs can solve a number of commonly encountered business challenges, including LAN-free and server-free tape backup, server clustering, and disaster recovery. As an information-systems professional, you must keep pace with this powerful, evolving technology.