Home | Best Seller | FAQ | Contact Us
Browse
Art & Photography
Biographies & Autobiography
Body,Mind & Health
Business & Economics
Children's Book
Computers & Internet
Cooking
Crafts,Hobbies & Gardening
Entertainment
Family & Parenting
History
Horror
Literature & Fiction
Mystery & Detective
Nonfiction
Professional & Technology
Reference
Religion
Romance
Science
Science Fiction & Fantasy
Sports & Outdoors
Travel & Geography
   Book Info

enlarge picture

Curious Minds: How a Child Becomes a Scientist  
Author: John Brockman (Editor)
ISBN: 0375422919
Format: Handover
Publish Date: June, 2005
 
     
     
   Book Review

From Publishers Weekly
In this anthology of reminiscences by prominent scientists, the roll includes Richard Dawkins, Murray Gell-Mann, Joseph Ledoux and Ray Kurzweil, along with 23 others. The mandate of the book's editor, literary agent Brockman (The Third Culture), to each of these authors was to write an essay explaining how he or she came to be a scientist. Some take him at his word and write meandering stories of childhood. David Buss found his calling—the study of human mating behavior—while working at a truck stop after dropping out of school. Paul Davies says he was born to be a theoretical physicist. Daniel Dennett, on the other hand, seems to have tried every other profession before landing, as if by accident, in science. A few writers let their essays get hijacked by the science they have devoted their lives to. And in the midst of this, like a keystone in an arch, is an essay by Steven Pinker explaining why the entire exercise is a bunch of hooey: scientifically speaking, he says, people have no objective idea what influenced their behavior, and that writing a memoir is creative storytelling, not objective observation of what actually happened. Whether or not these essays are scientifically sound is open to debate, but they do offer occasionally inspiring glimpses into the minds of today's scientific intelligentsia. Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.

From Scientific American
When the late evolutionist and polymath Stephen Jay Gould was a toddler, he became fascinated and terrified by the towering Tyrannosaurus rex skeleton at the American Museum of Natural History. Gould later claimed to have been instantly "imprinted" on the monstrous saurian, like a duckling on its mama. The little boy decided on the spot to become a paleontologist--years before he even learned the word. In John Brockman's Curious Minds: How a Child Becomes a Scientist, a collection of 27 autobiographical essays by leading savants, Harvard psychologist Steven Pinker scoffs at this oft-told story. Pinker relates that Gould dedicated his first book: "For my father, who took me to see the Tyrannosaurus when I was five," and admires Gould's "genius ... for coming up with that charming line." But he doesn't buy it. Pinker goes on to tell his own childhood story, with the caveat that long-term memory is notoriously malleable and that we often concoct retrospective scenarios to fit satisfying scripts of our lives. So don't believe anything in this book, he warns, including his own self-constructed mythology; many children are exposed to books and museums, but few become scientists. Pinker concludes that perhaps the essence of who we are from birth shapes our childhood experiences rather than the other way around. Nevertheless, when Brockman asked Pinker and others to trace the roots of their adult obsessions for this book, he received some unexpected and entertaining responses. Primatologist Robert Sapolsky, for example, haunted the Bronx Zoo and the natural history museum, as Gould did, but fell in love with living primates rather than fossil bones. He didn't want to just study mountain gorillas, he recalls of his childhood crush on monkeys and apes, "I wanted to be one." For the past few decades, Sapolsky has spent half of each year in his physiology lab and the other half among wild baboon troops in East Africa. Some people, such as theoretical psychologist Nicholas Humphrey, are simply born into science. His grandfather, Nobel laureate A. V. Hill, often took him along to the physiology lab. Grandfather Hill--quoting his friend Ivan Pavlov--taught young Nicholas that "facts are the air of a scientist. Without them you can never fly." Among frequent visitors to the family home were his great-uncles Maynard and Geoffrey Keynes, members of British science's aristocracy, as well as his great-aunt Margaret, a granddaughter of Charles Darwin. He recalls how their long-term houseguest, an adolescent, "bossy" Stephen Hawking, once marched up and down the hallways clutching a military swagger stick, barking at a "platoon of hapless classmates." Science was Humphrey's birthright. Richard (The Selfish Gene) Dawkins, one of England's preeminent Darwinians, admits that he never cared for science or the natural world during his early years. He was inspired, however, by the fanciful children's books about Dr. Dolittle by Hugh Lofting. The good doctor was a Victorian gentleman who held intelligent conversations with mice and parrots and whales. An adventurous sort, he traveled the world to learn the secrets of faraway places. When the adult Dawkins encountered the life and works of Charles Darwin, he welcomed him as an old friend and hero of his youth. Dolittle and Darwin, he opines, "would have been soul brothers." Lynn Margulis's early interest in the wonders of the microscopic world began when she was a "boy crazy" adolescent, who was amazed to learn that some minuscule creatures never need sex in order to reproduce. Enter a teenage heartthrob: the budding astrophysicist Carl Sagan. ("Tall, handsome in a sort of galooty way, with a shock of brown-black hair, he captivated me.") She was 16 when they met; eventually they married. Sagan's fascination with "billions and billions" of cosmic bodies resonated with her own fixation on the billions of microcosms to be observed through the microscope. Margulis's study subjects have included a tiny animal in a termite's gut that is made up of five distinct genomes cobbled together. She has argued that we and other animals are composite critters, whose every cell harbors long-ago invaders--minute symbiotic organisms that became part of our makeup. Her innovative approach to evolution has profoundly influenced biology. Harvard psychologist and neurologist Howard Gardner says his youth was notable for its lack of any clues indicating a future in science: "I did not go around gathering flowers, studying bugs, or dissecting mice ... I neither assembled radios nor tore apart cars." Yet, for others, there was a decisive turning point. And some could clearly remember it. I was fortunate in having been a childhood friend of Steve Gould's and can vouch for the sincerity o f his conviction that his extraordinary career as a paleontologist, historian of science and evolutionary theorist began when that T. rex followed him into his nightmares. Once, during our junior high school days, I stood with him beneath that iconic carnosaur in the museum, observing his reverence and awe on revisiting the shrine of his inspiration. Professor Pinker, of course, is free to believe that I'm making this up for my own psychological reasons.

Richard Milner is an associate in anthropology at the American Museum of Natural History. His new book, Darwin's Universe, will be published by the University of California Press in 2005.

From Booklist
Twenty-seven scientists credit a satisfying suite of epiphanies, mentors, teachers, and books as reasons and inspiration for their career choices. Most remember their parents as being vital influences who enriched their childhoods with zoo and field trips and the like. And most contend that native intelligence is insufficient: mastering a subject is key. As crucial as hard work to becoming a scientist, however, is retaining one's impressionability. As one of Brockman's contributors remarks, "My childhood continues." With bylines from world-famous scientists such as Freeman Dyson and Murray Gell-Mann, these autobiographical stories will fully gratify the general science audience. Gilbert Taylor
Copyright © American Library Association. All rights reserved

From the Inside Flap
A fascinating collection of essays from twenty-seven of the world’s most interesting scientists about the moments and events in their childhoods that set them on the paths that would define their lives.

What makes a child decide to become a scientist?

•For Robert Sapolsky—Stanford professor of biology—it was an argument with a rabbi over a passage in the Bible.
•Physicist Lee Smolin traces his inspiration to the volume of Einstein’s work he picked up as a diversion from heartbreak.
•Mihaly Csikszentmihalyi, a psychologist and the author of Flow, found his calling through Descartes.
•Mary Catherine Bateson—author of Composing a Life—discovered that she wanted to be an anthropologist while studying Hebrew.
•Janna Levin—author of How the Universe Got Its Spots—felt impelled by the work of Carl Sagan to know more.

Murray Gell-Mann, Nicholas Humphrey, Freeman Dyson, Daniel C. Dennett, Lynn Margulis, V. S. Ramachandran, Howard Gardner, Richard Dawkins, and more than a dozen others tell their own entertaining and often inspiring stories of the deciding moment. Illuminating memoir meets superb science writing in essays that invite us to consider what it is—and isn’t—that sets the scientific mind apart and into action.

About the Author
John Brockman, editor of many books, including The Next Fifty Years, is also the author of By the Late John Brockman, The Third Culture, and Digerati: Encounters with the Cyber Elite. He is the founder and CEO of Brockman Inc., a literary and software agency, and the publisher and editor of the Web site Edge. He lives in New York City.

Excerpt. © Reprinted by permission. All rights reserved.
A Family Affair

NICHOLAS HUMPHREY

Nicholas Humphrey, School Professor at the London School of Economics and professor of psychology at the New School for Social Research, is a theoretical psychologist, internationally known for his work on the evolution of human intelligence and consciousness. His books include Consciousness Regained, The Inner Eye, A History of the Mind, Leaps of Faith, and The Mind Made Flesh.

On Boxing Day 1960, soon after breakfast, Gower Street in London was deserted. I and my grandfather, A. V. Hill, entered the anatomy department of University College through a side door and made our way stealthily upstairs to his laboratory. The atmosphere was morguelike, and a musty smell of formaldehyde hung in the air. Water dripped from the lab ceiling and splashed onto an umbrella raised over the bench. A clock ticked, oddly out of tempo with the dripping; otherwise there was an eerie stillness. Grandpa removed the lid from a basin filled with live frogs, picked one out, and eyed its strong thigh muscles. He put it aside in a glass jar and called me over to admire it. The dissecting instruments and pins were waiting beside the corkboard.

I was seventeen years old. I had been reading Hermann Hesse's novel Steppenwolf, and I thought of the Magic Theater, with the strange sign on its door: "Not for Everybody." I felt (not for the first time) that I had crossed a threshold into a place from which ordinary people were excluded. But in the novel the theater's door bore another sign beneath the first: "For Madmen Only." I was proud to be where I was, and in this company, but I was wary, too.

My grandfather had in fact chosen this day to go to work, when most normal people were still in bed sleeping off their Christmas dinners, for the sanest of reasons. Following on from the research for which he had won the 1922 Nobel Prize in Physiology or Medicine, he was now, at age seventy-five, conducting what he would later call his "last experiments in muscle mechanics." He had recently developed a much improved moving-coil galvanometer to measure the heat output during muscular contraction, but his new instrument was so sensitive to vibration that every car passing in the street outside, every footstep on the landing, created a false reading. So a day like this, which belonged only to him and me, was the ideal time to make a perfect measurement.

He could have done the experiment alone. But science for my grandfather was nothing if not a family affair, and he had long been in the habit of engaging his children and grandchildren as his assistants. This is his account of how he prepared for the Royal Institution Christmas Lectures in 1926:

Of the suggestions for my Lectures, the best came from Janet, aged eight, who proposed that I should make experiments upon her.... The more I thought about it, the better it seemed. Fearful experiments I would make on all my children: Polly's heart should be shown beating; and her emotions should be exposed on a screen. David should be given electric shocks till sparks came out of his hands.... Janet should have the movements of her stomach (there is no decency in young ladies these days) shown to the audience on a screen. Then the noises made by Maurice's heart should be made to resound like a gun all round the lecture hall...and he would not be content till I had promised that he also should have electric shocks.

Now, a generation later, he had called on me to help him, as part of the tradition. Research assistant or sorcerer's apprentice? A bit of both.

At lunchtime we ate the cheese and cider that were Grandpa's standard fare. The cider, pale and dry, came from a press in the village of Ivybridge in Devon, where for many years he had owned a country house on the edge of Dartmoor. Prompted by the Devon associations and the intimacy of the occasion, he told me the story of how he had been able to date precisely the day he first set foot on the moor. He and his mother had been staying for the holidays on a farm nearby. Borrowing a gun from the farmer, he had gone out to shoot rabbits. Around midday, to his complete surprise, he saw a solar eclipse developing, with the sun beginning to be swallowed by the shadow of the moon. He took the glass from his pocket watch and smeared it with the blood of a rabbit he had just killed, so that he could watch the phenomenon in safety. Many years later he verified the date in an astronomical almanac: May 28, 1900, 2:30 p.m.

Grandpa never had much time for metaphysics ("the art of bamboozling people--methodically," he once told me). But on that morning he and I were developing an unusual bond, and now he let himself talk of things he would not normally have shared. There was a lesson in the story of the rabbit's blood and the eclipse. The sun, moon, and stars have one kind of destiny. Their times and courses are fixed by well-known laws. Newton could have predicted hundreds of years earlier exactly what would be seen at that place and time. But rabbits and boys--yes, and frogs, too--have another kind of destiny. It seems that we know neither the day nor the hour wherein fateful things will happen. What laws, if any, apply to human behavior?

Pavlov, whom Grandpa had counted as a friend and had several times visited in Leningrad, believed that there would one day be a science of the mind similar in rigor to the sciences of physics and chemistry. For that matter, so did Sigmund Freud, to whom my grandfather played host when Freud was made a Foreign Member of the Royal Society in 1938 and with whom he had got on surprisingly well. But what contrasting notions those two had of what science is! Grandpa had given me, some years earlier, a framed text of Pavlov's "Bequest to the Academic Youth of Russia"--or, as it became known, Pavlov’s Last Testament--written just before his death in 1936 at the age of eighty-seven. This is the passage he marked out for me:

Never attempt to screen an insufficiency of knowledge even by the most audacious surmise and hypothesis. Howsoever this soap bubble will rejoice your eyes by its play, it inevitably will burst and you will have nothing except shame.... Perfect as is the wing of a bird, it never could raise the bird up without resting on air. Facts are the air of a scientist. Without them you never can fly. Without them your "theories" are vain efforts.

Grandpa loved that image of the soap bubble. Just right, or so he thought, for describing Freudian theory. Later that day, when we returned to his study, he pulled out an essay written in 1925 by his brother-in-law, John Maynard Keynes:

I venture to say that at the present stage the argument in favour of Freudian theories would be very little weakened if it were admitted that every case published hitherto had been wholly invented by Professor Freud in order to illustrate his ideas and to make them more vivid to the minds of his readers. That is to say, the case for considering them seriously mainly depends at present on the appeal which they make to our own intuitions as containing something new and true about the way in which human psychology works, and very little indeed upon the so-called inductive verifications, so far as the latter have been published up to date.... [Freud] deserves exceptionally serious and entirely unpartisan consideration, if only because he does seem to present himself to us, whether we like him or not, as one of the great disturbing, innovating geniuses of our age, that is to say as a sort of devil.


Huh! Didn't that put Freud nicely in his place!

I listened and watched and took things in. I moistened the frog’s muscle with Ringer solution. I had just left school, and the plan was for me to go to Cambridge the following October, with a scholarship to read math and physics. I knew next to nothing about biology. But my grandfather had other ideas for me. He himself had started out as a mathematician, only later to discover the world of biophysics. Now, he implied, the next real challenge lay in the behavioral sciences. A few weeks later, he arranged for me to spend six months at the Marine Biological Laboratory at Plymouth as a lab assistant to his protégé, Eric Denton, where I could learn--at any rate, begin to learn--about life.

And so I went, and so I did.


The poet W. H. Auden wrote: "When I find myself in the company of scientists, I feel like a shabby curate who has strayed by mistake into a room full of dukes." Possibly none of us except a duke can know what it feels like to be born to be a duke. Quite special, I imagine: One would have a sense of intrinsic superiority, of rights of access and freedoms from restraint not allowed to ordinary people. But I do know as well as anybody what it feels like to be born into a dynasty of scientists. Quite special, I can confirm, and somewhat the same.

A. V. Hill, my mother's father, was a scientist in the grand mold: Nobel laureate, member of Parliament for Cambridge and Oxford Universities in the Churchill war administration, champion of intellectual freedoms and responsibility around the world. He played a crucial part in arranging the flight of Jewish scientists from Hitler in the years before the war. Throughout my childhood, at my grandparents’ house in Highgate, there were always visitors with heavy mid-European accents and twinkling smiles, in excited discussion of new discoveries--who would receive, as the years passed, Nobel Prizes of their own.

My great-uncle Maynard Keynes died when I was two, but his intellectual presence hung over our family, and his wife, the Russian ballerina Lydia Lopokova, with all her Bloomsbury connections, lived on as a spritely babushka. Maynard's brother, Geoffrey, was a surgeon and medical historian; his wife, Margaret, was a granddaughter of Charles Darwin.

My mother, Janet (she of the moving stomach), became a doctor and later a psychoanalyst who worked with Anna Freud. Of her brothers and sisters, Maurice (of the resounding heart) became a geophysicist whose work was central to establishing the reality of continental drift. David (of the sparking hands) became a biophysicist, who, like his father, did research on muscle. Polly (of the exposed emotions) became one of the first economic anthropologists and studied the workings of the West African cocoa trade. Both Maurice and David were Fellows of the Royal Society, an institution that Grandmother Hill--with six of her immediate family as Fellows--came to regard as her private club.

My father, John Humphrey, was an immunologist and director of the National Institute for Medical Research, where he did seminal research on antibody formation. But like others in the family he was also deeply engaged in social and political issues. He was the founder of the Medical Campaign Against Nuclear Weapons, whose offspring, the U.S.-based International Physicians for the Prevention of Nuclear War, would later win the Nobel Peace Prize. His father, Herbert Humphrey, was an engineer and inventor. We had at home a Vanity Fair portrait of Grandfather Humphrey, captioned (after one of his inventions) "The Humphrey Pump"; but the invention of which, as a boy, I was secretly prouder was a one-man "manned torpedo" he designed in the First World War for use against German ships and for which he proposed himself as the first pilot--an offer that Churchill, then at the Admiralty, declined.

My grandfather's brother, Willie, had been a brilliant mathematician at Cambridge. But he turned to the church and became a missionary in West Africa, where he ran into trouble with the natives and was beheaded (and, so we always imagined, eaten). I never knew him, but I was given the telescope with which he used to watch for the mailboat coming into Freetown harbor--and along with the telescope a pathetic telegram, sent to his sister in England by a friend after his murder, saying simply: "Willie--Gravest News--More Follows." This sister, my great-aunt Edith, had wanted to be scientist, too, but there were no openings for women at British universities in the 1890s, so she went as a doctoral student to Zurich, where she attended lectures by the great Russian chemist Dmitry Mendeleyev, inventor of the periodic table. Later she became England's first female industrial chemist. She lived till the age of 103 and was a regular presence at our dinner table.

My immediate family was a large one. At home there were seldom less than ten at any meal, and during school holidays generally more. We lived in a huge house--Scottish baronial in style, with twenty-six rooms and over an acre of garden--in Mill Hill, North London, close to my father's research institute. I had four brothers and sisters and two orphaned cousins living at home, and another fifteen cousins within easy reach. We children went round in droves, stayed with one another in nearly unmanageable numbers, and met up regularly at my grandmother Hill's Sunday tea parties.

Stephen Hawking, then sixteen, came to live with us for a year while his parents were in India in 1958. Stephen was an intense, rather quizzical schoolboy, whom I remember (from my position two years his junior) as somewhat bossy. When I saw him many years later at his fiftieth birthday party in 1992, leading the dancing in his wheelchair, I reminded him of his efforts to teach my family to dance Highland reels (but I forbore to remind him of my more salient memory of him, marching up and down the hall of our house wielding a swagger stick and addressing an imaginary platoon of hapless schoolmates).

As children, we lived and breathed science, though of course we didn’t know this at the time. Our sprawling basement rooms were full of apparatus: prototype engines of my grandfather's, pumps and torpedoes, lathes and jigsaws, Meccano sets, photographic apparatus, Wimshurst electrical machines, microscopes, aquariums. We spent Saturdays running round the corridors of my father's institute. We went on outings to my uncle Maurice's observatory in Cambridge. We went on trips on the research ships out of the Marine Biology Laboratory. We accompanied Stephen's family on expeditions in search of flint arrowheads in the woods at South Mimms.

But the major event of each week was the visit to my maternal grandparents, the Hills. The company at these Sunday parties usually spanned three and sometimes four generations, with my grandfather’s colleagues and students invited to sit down with his offsprings’ offspring--highchairs on one side, wheelchairs sometimes on the other. After a formal tea of sandwiches and cakes, the grown-ups would thankfully retire to the drawing room to talk science and politics, while the children were turned out into the garden to amuse themselves (or rather the several gardens, for my grandmother Hill, who liked to have a lot of everything, had systematically bought up all the neighboring properties).




Curious Minds: How a Child Becomes a Scientist

FROM THE PUBLISHER

A collection of essays from twenty-seven of the world's most interesting scientists about the moments and events in their childhoods that set them on the paths that would define their lives.

SYNOPSIS

A fascinating collection of essays from twenty-seven of the world’s most interesting scientists about the moments and events in their childhoods that set them on the paths that would define their lives.

What makes a child decide to become a scientist?

•For Robert Sapolsky—Stanford professor of biology—it was an argument with a rabbi over a passage in the Bible.
•Physicist Lee Smolin traces his inspiration to the volume of Einstein’s work he picked up as a diversion from heartbreak.
•Mihaly Csikszentmihalyi, a psychologist and the author of Flow, found his calling through Descartes.
•Mary Catherine Bateson—author of Composing a Life—discovered that she wanted to be an anthropologist while studying Hebrew.
•Janna Levin—author of How the Universe Got Its Spots—felt impelled by the work of Carl Sagan to know more.

Murray Gell-Mann, Nicholas Humphrey, Freeman Dyson, Daniel C. Dennett, Lynn Margulis, V. S. Ramachandran, Howard Gardner, Richard Dawkins, and more than a dozen others tell their own entertaining and often inspiring stories of the deciding moment. Illuminating memoir meets superb science writing in essays that invite us to consider what it is—and isn’t—that sets the scientific mind apart and into action.

FROM THE CRITICS

Publishers Weekly

In this anthology of reminiscences by prominent scientists, the roll includes Richard Dawkins, Murray Gell-Mann, Joseph Ledoux and Ray Kurzweil, along with 23 others. The mandate of the book's editor, literary agent Brockman (The Third Culture), to each of these authors was to write an essay explaining how he or she came to be a scientist. Some take him at his word and write meandering stories of childhood. David Buss found his calling-the study of human mating behavior-while working at a truck stop after dropping out of school. Paul Davies says he was born to be a theoretical physicist. Daniel Dennett, on the other hand, seems to have tried every other profession before landing, as if by accident, in science. A few writers let their essays get hijacked by the science they have devoted their lives to. And in the midst of this, like a keystone in an arch, is an essay by Steven Pinker explaining why the entire exercise is a bunch of hooey: scientifically speaking, he says, people have no objective idea what influenced their behavior, and that writing a memoir is creative storytelling, not objective observation of what actually happened. Whether or not these essays are scientifically sound is open to debate, but they do offer occasionally inspiring glimpses into the minds of today's scientific intelligentsia. Agent, Max Brockman. (Sept. 1) Copyright 2004 Reed Business Information.

Library Journal

Just what turns a child on to science? This is the determinant that editor and author Brockman (The Next Fifty Years) seeks to elicit in this collection of 27 essays. Notables like Robert Sapolsky, Steven Pinker, V.S. Ramachandran, and others from the worlds of mathematics, physics, psychology, biology, and anthropology present miniature autobiographies in which they describe the influences that led them into their present areas of expertise. Decisions to follow science did not arise as epiphanies but through serendipitous events, natural aptitudes, family encouragement, and intellectual arousal. Pinker ascribes "genes and chance" to explain why people go into science. From these diverse essays, readers can assemble their own recipe for what attracts scientists to their career specialties. An interesting overview for popular and academic science collections.--Rita Hoots, Woodland Coll., CA Copyright 2004 Reed Business Information.

     



Home | Private Policy | Contact Us
@copyright 2001-2005 ReadingBee.com